一、鸡兔同笼问题解法四年级
用画图法。画图法是先把“头”的数量画出来,然后再把所有鸡的腿画出来。因为鸡的腿只有两只,所以腿肯定是多得。多的这些腿怎么办呢?再往鸡上补,而补了这些腿的“鸡”就成了兔了。这个方法非常简单明了,适合数值小的时候使用,数值一大就非常耗时间,反而不理了。
二、鸡兔同笼计算公式
鸡兔同笼的公式有多种,其中最常用的是:(兔的脚数×总只数-总脚数)÷(兔的脚数-鸡的脚数)=鸡的只数,总只数-鸡的只数=兔的只数。另外还有一些其他的公式,如假设全都是鸡,则有兔数=(实际脚数-2×鸡兔总数)÷(4-2);假设全都是兔,则有鸡数=(4×鸡兔总数-实际脚数)÷(4-2)1。此外,还有一些比较有趣的解法,如金鸡独立法和吹哨法2。
三、五年级数学鸡兔同笼解题方法
鸡兔同笼问题五种基本公式和例题讲解
【鸡兔问题公式】
(1)已知总头数和总脚数,求鸡、兔各多少:
(总脚数-每只鸡的脚数×总头数)÷(每只兔的脚数-每只鸡的脚数)=兔数;
总头数-兔数=鸡数。
或者是(每只兔脚数×总头数-总脚数)÷(每只兔脚数-每只鸡脚数)=鸡数;
总头数-鸡数=兔数。
例如,“有鸡、兔共36只,它们共有脚100只,鸡、兔各是多少只?”
解一(100-2×36)÷(4-2)=14(只)………兔;
36-14=22(只)……………………………鸡。
解二(4×36-100)÷(4-2)=22(只)………鸡;
36-22=14(只)…………………………兔。
(2)已知总头数和鸡兔脚数的差数,当鸡的总脚数比兔的总脚数多时,可用公式
(每只鸡脚数×总头数-脚数之差)÷(每只鸡的脚数+每只兔的脚数)=兔数;
总头数-兔数=鸡数
或(每只兔脚数×总头数+鸡兔脚数之差)÷(每只鸡的脚数+每只免的脚数)=鸡数;
总头数-鸡数=兔数。(例略)
(3)已知总数与鸡兔脚数的差数,当兔的总脚数比鸡的总脚数多时,可用公式。
(每只鸡的脚数×总头数+鸡兔脚数之差)÷(每只鸡的脚数+每只兔的脚数)=兔数;
总头数-兔数=鸡数。
或(每只兔的脚数×总头数-鸡兔脚数之差)÷(每只鸡的脚数+每只兔的脚数)=鸡数;
总头数-鸡数=兔数。(例略)
四、鸡兔同笼方程解法五年级
“鸡兔同笼”问题,要学会设X和Y。
一般题中都会告诉我们一些条件,比如鸡和兔共多少个头,多少只脚。
由生活常识我们知道鸡有两条腿,兔有四条腿。
我们可以设鸡有X只,兔有Y只。
则X+Y=总头数
2X+4Y=总腿(脚)数
两个方程联立,即可得到兔的数量和鸡的数量各为多少只。
五、鸡兔同笼怎么算方程
用方程解鸡兔同笼:设有鸡x只,则兔有(总数-x)只,因为每只兔有4只脚,每只鸡有2只脚。因此有鸡脚2x只,兔脚4(总数-x)只。所以可以得到方程:2x+4(总数-x)=总足数。比如:有若干只鸡兔同在一个笼子里,从上面数,有35个头;从下面数,有94只脚.求笼中各有几只鸡和兔?设兔有x只,则鸡有35-x只。4x+2(35-x)=944x+70-2x=942x=24x=12答:兔有12只,鸡有23只。
六、鸡兔同笼问题解答
我国古代的鸡兔同笼问题是运用假设法解题的一个典型范例,假设法是依据题目中的已知条件,做出某种设想,然后按已知条件进行推算,再根据数量上的矛盾进行替换,从而解决问题。
如,笼子里有鸡和兔,从上面看有八个头,从下面数有28只脚,鸡和兔各有几只?
假设8只全是兔,应有32只脚,已知条件是28支脚,多了4支脚,8只兔子应换几支鸡才能使4只脚的差数没有了,用两只鸡去换2只兔就行了,所以鸡是2只,兔是8-2等于6只。